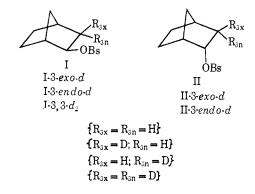

3464

placement reaction on V in acetone with tetramethylammonium acetate. In the preparation of *exo*-norbornyl-2-*d* acetate (VI), if the scheme functioned without rearrangement, the norcamphor VII isolated from the cycle in Chart I should contain no deuterium. In practice we found variable amounts of nonexchangeable deuterium in VII (usually 9–13%) by mass spectral analysis. These figures correspond to ionization of 18-26% of the *endo*-brosylate. The method may not always fail, but we were unable to control the reaction.¹⁵ The difficulty was circumvented by use of tetra-*n*butylammonium acetate in refluxing benzene. This process is much faster than its acetone counterpart (3 hr vs. 12 days).

The C₃-labeled compounds employed in our studies were also prepared by use of the new displacement conditions.¹⁰ Another necessary ingredient in the preparation of the C_3 -labeled compounds was the ability to oxidize *exo*-norborneol-3-d without significant loss of deuterium. This was accomplished with ruthenium tetroxide in Freon-11 at 0°.16 Immediate work-up afforded ketone with less than 2% loss of deuterium (by mass spectrum). When the reaction mixture was allowed to stand overnight the ketone showed 25%loss of deuterium. exo-3-Deuterium was introduced by deuterioboration. endo-3-Deuterium was introduced by LiAlD₄ reduction of *exo*-norbornene oxide. Norcamphor-3,3- d_2 was prepared by exchange.¹¹ All deuterium in the C_3 -deuterated norborneols was shown to be in that position by oxidation, exchange with trifluoroacetic acid,¹¹ and mass spectral analysis.

Acknowledgment. We thank Professor A. Nickon for helpful criticism and Professor H. C. Brown for suggesting deuterioboration to introduce *exo*-3-deuterium.

B. L. Murr, J. A. Conkling¹⁷ Department of Chemistry, The Johns Hopkins University Baltimore, Maryland 21218


Received February 17, 1970

Sir:

The small isotope effect on *ionization* (k_{α}) caused by C₃ dideuteration of *exo*-norbornyl bromide $(k_{\rm H}/k_{\rm D} = 1.09)$ was attributed to participation, which imparts SN2 character to C₂ and lowers the demand for hyperconjugative electron release.² The even smaller effect on *solvolysis* $(k_{\rm H}/k_{\rm D} = 1.04)$ was ascribed to isotopic scrambling to C₇ by internal return.² A low isotope effect $(k_{\rm H}/k_{\rm D} = 1.014)$ was also reported for *exo*-norbornyl-3,3-d₂ brosylate.³ The latter isotope effect is extraordinary because secondary bromides invariably have shown smaller isotope effects than corresponding arenesulfonates.

In this note we report identification of a heretofore unrecognized cause for the low C_3 isotope effect on solvolysis of *exo*-norbornyl derivatives. The known geometric dependence of the β -isotope effect^{4,5} and the particular geometry of the nonclassical norbornyl cation suggested that low β -isotope effects might result from a low *endo*-3-*d* isotope effect due to its unfavorable geometric orientation in the nonclassical transition state. This would result in a substantial effect for an *exo*-3-*d* and a low effect for an *endo*-3-*d*. Epimeric C_3 -deuterated *endo*-norbornyl brosylates that ionize to a classical cation should both show substantial isotope effects.

We have determined isotope effects (Table I) on aqueous ethanolysis and acetolysis of *exo*-norbornyl-3-*exo-d* brosylate (I-3-*exo-d*), *exo*-norbornyl-3-*endo-d* brosylate (I-3-*endo-d*), *exo*-norbornyl-3,3- d_2 brosylate (I-3,3 d_2), *endo*-norbornyl-3-*exo-d* brosylate (II-3-*exo-d*), *endo*norbornyl-3-*endo-d* brosylate (II-3-*endo-d*), and *endo*norbornyl-3,3- d_2 brosylate (II-3,3- d_2).⁶

Entries 1-4 (Table I, 80% ethanol) show that essentially the entire isotope effect of $I-3,3-d_2$ is caused by the *exo-3-d*. The isotope effects, however, for II-3-*exo-d* and II-3-*endo-d* are both substantial (entries 5-7) and similar to values recently reported for *trans*- and *cis*cyclopentyl-2-*d* brosylates (entries 8 and 9).⁷

(1) This work was supported by the National Science Foundation.

- (2) J. P. Schaefer, M. J. Dagani, and D. S. Weinberg, J. Amer. Chem. Soc., 89, 6938 (1967).
 (3) J. M. Jerkunica, S. Borčić, and D. E. Sunko, Chem. Commun.,
- (3) J. M. Jerkunica, S. Borčič, and D. E. Sunko, Chem. Commun., 1302 (1967).
- (4) V. J. Shiner, Jr., and J. S. Humphrey, Jr., J. Amer. Chem. Soc., 85, 2416 (1963).
- (5) V. J. Shiner, Jr., B. L. Murr, and G. Heinemann, *ibid.*, 85, 2413 (1963).

(6) Compounds were prepared by methods given in the preceding paper: B. L. Murr and J. A. Conkling, *ibid.*, 92, 3462 (1970). See also ref 7 of this paper.

(7) J. O. Stoffer and J. D. Christen, ibid., 92, 3190 (1970). The au-

⁽¹⁵⁾ Spectral analysis by nmr suggested that little or no rearrangement accompanied one tetramethylammonium acetate-acetone run. Professor C. C. Lee has informed us that he has also detected the rearrangement.

⁽¹⁶⁾ E. J. Corey, J. Casanova, Jr., P. A. Vatakencherry, and R. Winter, J. Amer. Chem. Soc., 85, 169 (1963).

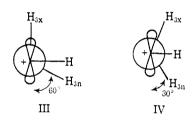

⁽¹⁷⁾ National Science Foundation Cooperative Fellow, 1965-1969.

Table I. Isotope Effects on the Solvolysis of exo-Norbornyl Brosylate, endo-Norbornyl Brosylate, and Cyclopentyl Brosylate

	• • •	•		•
Compounds compared ^a and position(s) of deuteriation	$k_{\rm H}/k_{\rm D}$ 80% ethanol	$k_{\rm H}/k_{\rm D}$ per D	$k_{ m H}/k_{ m D}$ HOAc-KOAc	$k_{\rm H}/k_{\rm D}$ per D
	exo-Norbornyl Brosy	lates, 25°		
I-3-exo-d vs. I	1.11 ± 0.01	1.11	1.07 ± 0.02	1.07
I-3-endo-d vs. I	1.02 ± 0.01	1.01	1.02 ± 0.01	1.01
$I-3, 3-d_2 vs. I$	1.11 ± 0.01	1.06	1.07 ± 0.01	1.03
I-3-exo-d vs. I-3,3-d2	1.00 ± 0.01	1.00		
, <u>-</u>	endo-Norbornyl Brosy	lates, 55°		
II-3-exo-d vs. II	1.19 ± 0.01	1.19		
II-3-endo-d vs. II	1.12 ± 0.01	1.12		
$II-3, 3-d_2 vs. II$	1.31 ± 0.01	1.15		
.,	Cyclopentyl Brosylat	es. ^b 25°		
$cis-2-d_1$	1.153	•		
trans-2-d ₁	1.180			
$2,2,4,4-d_4$	1.888			
	position(s) of deuteriation I-3-exo-d vs. I I-3-endo-d vs. I I-3,3- d_2 vs. I I-3-exo-d vs. I-3,3- d_2 II-3-exo-d vs. II II-3-endo-d vs. II II-3,3- d_2 vs. II cis-2- d_1 trans-2- d_1	position(s) of deuteriation 80% ethanol $i-3$ -exo-d vs. I $i.11 \pm 0.01$ $i-3$ -endo-d vs. I 1.02 ± 0.01 $i-3$ -endo-d vs. I 1.02 ± 0.01 $i-3$ -exo-d vs. I 1.02 ± 0.01 $i-3$ -exo-d vs. I 1.00 ± 0.01 $i-3$ -exo-d vs. I-3,3-d2 1.00 ± 0.01 $i-3$ -exo-d vs. II 1.12 ± 0.01 $i-3$ -exo-d vs. II 1.12 ± 0.01 $i-3$ -exo-d vs. II 1.12 ± 0.01 $i-3$ -exo-d vs. II 1.22 ± 0.01 $i-3$ -exo-d vs. II 1.22 ± 0.01 $i-3$ -exo-d vs. II 1.12 ± 0.01 $i-3$ -exo-d vs. II 1.31 ± 0.01 cis -2-d1 1.153 $trans$ -2-d1 1.180	position(s) of deuteriation80% ethanolper Dexo-Norbornyl Brosylates, 25°I-3-exo-d vs. I1.11 \pm 0.011.11I-3-endo-d vs. I1.02 \pm 0.011.01I-3,3-d2 vs. I1.11 \pm 0.011.06I-3-exo-d vs. I-3,3-d21.00 \pm 0.011.00endo-Norbornyl Brosylates, 55°II-3-exo-d vs. II1.19 \pm 0.011.19II-3-endo-d vs. II1.12 \pm 0.011.12II-3,3-d2 vs. II1.12 \pm 0.011.15Cyclopentyl Brosylates, b 25°Cyclopentyl Brosylates, b 25°trans-2-d11.180	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a For entries 1-7, the compounds named were run simultaneously in the same thermostated spectrophotometer compartment. Each isotope effect is the average of from four to eight determinations by the method of C. G. Swain and C. R. Morgan, J. Org. Chem., 29, 2097 (1964). ^b The cyclopentyl brosylates were studied in 70% ethanol.⁷

The strikingly different isotope effects of I-exo-3-d and I-endo-3-d⁸ accord with nonclassical ion theory if allowance is made for geometric dependence of the isotope effect. Newman projections along the C_2-C_3 bond of the nonclassical (III)⁹ and classical (IV) norbornyl cations show the relative dispositions of the protons at C_3 and the vacant p orbital at C_2 . H_{3x} and H_{3n} are the protons originally exo and endo at C_3 in the substrate. In III, H_{3x} is ideally aligned for interaction

with the vacant p orbital at C_2 whereas H_{3n} is 60° from the orbital. A C-D bond at 60° to the developing p orbital exhibited a small isotope effect on ionization of t-butyl chloride (1.01–1.03 per D).⁵ Inclusion of the leaving group in a consideration of the transition-state precusor of III would alter the geometry but not the conclusion that H_{3x} should have a larger isotope effect than H_{3n} . In the initial state H_{3x} is eclipsed with the leaving group. The geometric requirement of participation maintains the eclipsed alignment in the transition state.¹⁰ In the initial state H_{3n} is 30° from the plane containing H_{3x} , C_2 , C_3 , and the leaving group. In the transition state this angle approaches 60°. If I ionized through a classical transition state the isotope effects of H_{3x} and H_{3n} would be similar, as they are for II.

In the classical norbornyl cation (IV), H_{3x} and H_{3n} are equivalently disposed at 30° from the vacant orbital. In the ionization transition state the leaving group would modify this equivalence. A 30° orientation of the C-H is not optimum but it is better than a 60° orientation.⁴ In the initial state of II, H_{3n} is eclipsed with the leaving group but at the transition state the C-H_{3n} bond tends toward the 30° orientation of the classical cation. The substantial isotope effects for H_{3n} and H_{3x} on the ionization of II to the classical cation reflect the similarity in the dispositions of these two protons.

The acetolysis isotope effects of I-exo-3-d and I-3,3-d₂ are lower than for aqueous ethanolysis. The smaller values are readily explained by isotopic scrambling to C_7 by internal return.² The lower isotope effects at C_7 than at C_3 may result from a smaller initial-state zero-point energy of the C_7 C-H bonds or the lack of equivalence of C_8 and C_7 in the transition state. The near equality of the C_6 exo and endo isotope effects does not require the equivalence of C_3 and C_7 .^{11,12} The C-6 isotope effects are determined by weakening the C_1-C_6 bond which effects both C_6 bonds similarly.^{11,13}

The isotope effect for I-exo-3-d is smaller than that of the *trans* proton of *t*-butyl chloride (1.31).⁵ The diminished effect could result from the SN2 effect of participation already noted² as well as two additional factors: (1) eclipsing of the leaving group that suppresses hyperconjugative electron release; and (2) steric crowding of the *exo*-3 proton of I that increases zero-point energy in the transition state.

The β -isotope effects of II-exo-3-d and II-endo-3-d are only half the maximum effect.⁵ The primary cause of the decrease is the unfavorable orientation of the C-H bonds to the developing orbital as has been suggested for the cyclopentyl case.⁴ The lower H_{3n} isotope effect in II compared to H_{3x} could result from hindrance of hyperconjugative electron release and/or steric constraints by the leaving group.

Finally, our results are inconsistent with the hypothesis that the β -isotope effect results solely from relief of steric strain.¹⁴ If the larger H_{3x} isotope effect on I

3465

thors are indebted to Professor Stoffer for communicating his results prior to publication.(8) The difference in isotope effect corresponds to a zero-point energy

⁽⁸⁾ The difference in isotope effect corresponds to a zero-point energy (ZPE) difference of 120 cm⁻¹ that is far greater than any possible initialstate ZPE difference.

⁽⁹⁾ III also describes the C_1-C_7 bond of the nonclassical cation.

⁽¹⁰⁾ The eclipsed alignment is not optimum for maximum isotope effect but it is clearly preferable to 60° . The optimum is *trans*-co-planar.⁴

⁽¹¹⁾ J. M. Jerkunica, S. Borčić, and D. E. Sunko, J. Amer. Chem. Soc., 89, 1732 (1967).

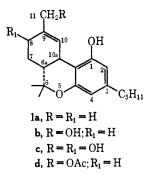
⁽¹²⁾ Using methods previously described, ¹³ we can calculate from the acetolysis and ethanolysis isotope effects only a range for $k_{\rm H}/k_{\rm D}$ of 1.03 to 1.08 for *exo*-norbornyl-7,7- d_2 brosylate. The *syn*-7-*d* should show a larger isotope effect than the *anti*-7-*d*. We are checking this prediction.

⁽¹³⁾ B. L. Murr, A. Nickon, T. Swartz, and N. H. Werstiuk, J. Amer. Chem. Soc., 89, 1730 (1967).

⁽¹⁴⁾ H. C. Brown, M. E. Azzaro, J. G. Koelling, and G. J. McDonald, *ibid.*, 88, 2520 (1966).

3466

is rationalized in this way, II-endo-3-d and cis-cyclopentyl-2-d brosylate should show larger isotope effects than II-exo-3-d and trans-cyclopentyl-2-d brosylate.


(15) National Science Foundation Cooperative Fellow, 1965-1969.

B. L. Murr, J. A. Conkling¹⁵ Department of Chemistry, The Johns Hopkins University Baltimore, Maryland 21218 Received February 17, 1970

Isolation, Structure, and Biological Activity of Several Metabolites of Δ^9 -Tetrahydrocannabinol

Sir:

Although there has been considerable recent interest in the metabolism of Δ^9 -tetrahydrocannabinol, ^{1a,b} **1a**, none of the metabolites has been isolated or characterized. Since **1a** is the constituent largely responsible for the psychotomimetic properties of cannabis² (hashish, marihuana), the properties of its metabolites are of great importance in understanding the physiological disposition of this drug. We wish to report for the first time the *structure* and *biological activity* of several metabolites of **1a** produced by a rat liver microsomal fraction.

Aerobic incubation of synthetic 1a,³ containing tritium-labeled $1a^4$ as a marker, with the 10,000g supernatant prepared from male rat liver homogenate to which was added appropriate cofactors,^{5,6} followed by ethyl acetate extraction and chromatography on silica gel resulted in the isolation of unreacted 1a, yield 25%,⁷ and three new compounds, 1b, mp 136.5–

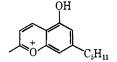
(1) (a) G. Joachimogliu, J. Kibaris, and C. Miras, Propt. Acad. Athenon, 70, 161 (1967); (b) S. Agurell, I. M. Nelsson, A. Ohlsson, and F. Sandberg, Biochem. Pharmacol., 18, 1195 (1969).

(2) An excellent review of the literature on the chemistry and biological activities of the various cannabinoids is presented by R. Mechoulam and Y. Gaoni, Fortschr. Chem. Org. Naturst., 25, 175 (1967).

(3) This material was obtained through Dr. John Scigliano, Center for Drug Abuse, NIMH, NIH, Bethesda, Md.

(4) M. L. Timmons, C. G. Pitt, and M. E. Wall, Tetrahedron Lett., 3129 (1969).

(5) For recent reviews of microsomal hydroxylations and drug transformations, see: (a) "Microsomes and Drug Oxidations," J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, Ed., Academic Press, New York, N. Y., 1969; (b) D. V. Parke, "The Biochemistry of Foreign Compounds," Pergamon Press, Elmsford, N. Y., 1968.
(6) Summary of experimental and divisors for a filter and the text of the second second


(6) Summary of experimental conditions: 500 g of liver was obtained from 350-g male rats, pretreated with phenobarbital prior to sacrifice. A homogenate was prepared using 0.1 M potassium phosphate buffer (5 l., pH 7.4), containing 0.013 M magnesium chloride. The ice-cold homogenate was centrifuged at 10,000 G. To the supernatant thus obtained was added 1.0 g of 1a plus 394 μ Ci of tritium-labeled 1a and cofactors, NADP (6.55 g, 1.6 × 10⁻³ M), G6P (14.3 g, 8.0 × 10⁻³ M), and G6P-dehydrogenase, 1000 units. The mixture was incubated aerobically, shaking for 2 hr at 37°, using 10 3-1. Fernbach flasks. The reaction was quenched by extraction with ethyl acetate.

(7) (a) The yields were based on thin layer chromatography of the

Table I.	Low	Resolution	Mass	Spectra				
of Δ° -THC and Metabolites								

	Mass no. of ion from compd			
Assignment	1 a	1b	1c	1d
M	314	330	346	372
M − CH ₃	299	315		
$M - H_2O$		312	328	
M – CH₂OH		299	315	
$M - H_2O - CH_3$		297	313	
$M - CH_2OH - H_2O$			297	
M – CH ₃ COOH				312
$M - CH_3COOH - CH_3$				297
$M - C_3 H_7$	271			
$M - H_2O - C_3H_7$			285	
OH				
+	231	231	231	231
CH, C.H.				

138°, yield 30%; 1c, mp 139–140.5°, yield 30%; and 1d, an oil, yield 15%. Tables I and II compare, respectively, the mass spectral and nmr data of 1a–d. The structure of 1b, the major metabolite, was obtained as follows: the uv spectrum [ν_{max}^{EtOH} 283 nm (1280), 276 nm (1250)] of 1b was the same as that of 1a,² indicating that the basic cannabinoid chromophore is retained in 1b. High resolution mass spectrometry of 1b gave a parent ion at m/e 330.2203, consistent only with the structure C₂₁H₃₀O₃ and showing that one hydroxyl moiety had been substituted for hydrogen in 1a, C₂₁H₃₀O₂. A very strong base peak was found at m/e 299 (M – CH₂OH). In addition a very useful diagnostic peak at m/e 231 was noted. It has been reported⁸ that this peak is due to the fragment

Its presence is reasonable evidence that the new hydroxyl group in 1b cannot be located on the two rings shown, or on the amyl side chain. The strong base peak at m/e 299 is best accounted for by elimination of the C-9 vinylic hydroxymethyl group in 1b. The structure assigned was completely confirmed by nmr analysis (Table II). Comparing 1a and 1b, it will be noted that the three-proton singlet at 1.62 ppm due to the C-9 methyl² of 1a is absent in 1b and replaced by a new two-proton signal at 3.92 ppm. The chemical shift of this signal is in good agreement for that expected for $-C = C - CH_2OH$. With these exceptions the nmr signals for 1a and 1b are virtually identical. The structure of the closely related compound 1d was established along similar lines, the presence of the acetoxymethyl group at C-9 being readily established by mass spectral and nmr data, cf. Tables I and II, and ir analyses (ν_{max}^{CC14} 1740 cm⁻¹). Furthermore, careful alkaline hydrolysis converted 1d to 1b. Compound 1d

the case of rats which were not treated with phenobarbital. (8) H. Budzikiewicz, R. T. Alpin, D. A. Lightner, C. Djerassi, R. Mechoulam, and Y. Gaoni, *Tetrahedron*, 21, 1881 (1965); U. Claussen, H. W. Fehlhaber, and F. Korte, *ibid.*, 22, 3535 (1966).

ethyl acetate extract of the incubation mixture using a radioscanner to reveal the individual labeled peaks. Zones were scraped and counted in a liquid scintillation counter to determine the yields. (b) The same compounds, **1a-d**, were found, but with lower yields of **1b**, **1c**, and **1d**, in the case of rats which were not treated with phenobarbital.